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In 2017 Emily Riehl and I posted a paper [1] on the arXiv entitled “The comprehension construction.” and
we blogged about it on the n-Category Café. That post explains the use of the term comprehension in the title
of that paper.

I have reproduced it here to show off some Haskell hacking I’ve been indulging in to support the typesetting
of category theoretic diagrams in blog posts. To do this I’ve used LaTeX to generate SVG images, from
diagrams specified using packages such as PGF/TikZ, which are then inlined directly into HTML pages.

What is the comprehension construction?
The comprehension construction is somehow analogous to both the straightening and the unstraightening
constructions introduced by Lurie in his development of the theory of quasi-categories. Most people use
the term∞-categories as a rough synonym for quasi-categories, but we reserve this term for something more
general: the objects in any ∞-cosmos. There is an ∞-cosmos whose objects are quasi-categories and another
whose objects are complete Segal spaces. But there are also more exotic ∞-cosmoi whose objects model
(∞,n)-categories or fibered (∞,1)-categories, and our comprehension construction applies to any of these
contexts.

The input to the comprehension construction is any cocartesian fibration between ∞-categories together
with a third ∞-category𝐴. The output is then a particular homotopy coherent diagram that we refer to as
the comprehension functor. In the case 𝐴 = 1, the comprehension functor defines a “straightening” of the
cocartesian fibration. In the case where the cocartesian fibration is the universal one over the quasi-category
of small ∞-categories, the comprehension functor converts a homotopy coherent diagram of shape𝐴 into its
“unstraightening,” a cocartesian fibration over𝐴.

The fact that the comprehension construction can be applied in any ∞-cosmos has an immediate benefit.
The codomain projection functor associated to an ∞-category𝐴 defines a cocartesian fibration in the slice
∞-cosmos over𝐴, in which case the comprehension functor specializes to define the Yoneda embedding.

Classical comprehension
The comprehension scheme in ZF set theory asserts that for any proposition 𝜙 involving a variable 𝑥 whose
values range over some set𝐴 there exists a subset

{𝑥 ∈ 𝐴 ∣ 𝜙(𝑥)}
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comprised of those elements for which the formula is satisfied. If the proposition 𝜙 is represented by its
characteristic function 𝜒𝜙 ∶ 𝐴 → 2, then this subset is defined by the following pullback

{𝑥 ∈ 𝐴 ∣ 𝜙(𝑥)} 1

𝐴 2

⊤

𝜒𝜙

of the canonical monomorphism ⊤∶ 1 → 2. For that reason, 2 is often called the subobject classifier of the
category𝒮ℯ𝓉 and the morphism ⊤∶ 1 → 2 is regarded as being its generic subobject. On abstracting this point
of view, we obtain the theory of elementary toposes.

TheGrothendieck construction as comprehension
What happens to the comprehension scheme when we pass from the 1-categorical context just discussed to
the world of 2-categories?

A key early observation in this regard, due to Ross Street I believe, is that we might usefully regard the
Grothendieck construction as an instance of a generalised form of comprehension for the category of
categories. This analogy becomes clear when we observe that the category of elements of a functor 𝐹∶ 𝒞 →
𝒮ℯ𝓉may be formed by taking the pullback:

∫𝐹 ∗/𝒮ℯ𝓉

𝒞 𝒮ℯ𝓉𝐹

Here the projection functor on the right, from the slice ∗/𝒮ℯ𝓉 of the category of sets under the one point
set, is a discrete cocartesian fibration. It follows, therefore, that this pullback is also a 2-pullback and that its
left-hand vertical is a discrete cocartesian fibration.

Street’s point of view is (roughly) that in a 2-category𝒦 it is the (suitably defined) discrete cocartesian
fibrations that play the role that the sub-objects inhabit in topos theory. Then the generic sub-object
⊤∶ 1 → Ω becomes a discrete cocartesian fibration ⊤∶ 𝑆∗ → 𝑆 in𝒦 with the property that pullback of
⊤ along 1-cells 𝑎 ∶ 𝐴 → 𝑆 provides us with equivalences between each hom-category Fun𝒦(𝐴, 𝑆) and the
category 𝒹𝒞ℴ𝒞𝒶𝓇𝓉(𝒦)/𝛢 of discrete cocartesian fibrations over𝐴 in𝒦.

This account, however, glosses over one important point; thus far we have only specified that each comparison
functor Fun𝒦(𝐴, 𝑆) → 𝒹𝒞ℴ𝒞𝒶𝓇𝓉(𝒦)/𝛢 should act by pulling back⊤∶ 𝑆∗ → 𝑆 along each 1-cell 𝑎 ∶ 𝐴 → 𝑆.
We have said nothing about how, or weather, this action might extend in any reasonable way to 2-cells
𝜙∶ 𝑎 ⇒ 𝑏 in Fun𝒦(𝐴, 𝑆)!

The key observation in that regard is that for any fixed “representably defined” cocartesian fibration 𝑝 ∶ 𝐸 → 𝐵
in a (finitely complete) 2-category𝒦, we may extend pullback to define a pseudo-functor Fun𝒦(𝐴, 𝐵) →
𝒦/𝐴. This carries each 1-cell 𝑎 ∶ 𝐴 → 𝐵 to the pullback 𝑝𝑎 ∶ 𝐸𝑎 → 𝐴 of 𝑝 along 𝑎 and its action on a 2-cell
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𝜙∶ 𝑎 ⇒ 𝑏 is constructed in the manner depicted in the following diagram:

𝐸𝑎

𝐸𝑏

𝐸

𝐴

𝐴

𝐵

𝑝𝑎

𝑎
𝑝𝑏

𝑝

ℓ𝑎

ℓ𝑏

𝑏

𝛦𝜙
𝜒

𝜙

Here we make use of the fact that 𝑝 ∶ 𝐸 → 𝐵 is a cocartesian fibration in order to lift the whiskered 2-cell 𝜙𝑝𝑎
to a cocartesian 2-cell 𝜒. Its codomain 1-cell may then be factored through 𝐸𝑏, using the pullback property of
the front square, to give a 1-cell 𝐸𝜙 ∶ 𝐸𝑎 → 𝐸𝑏 over𝐴 as required. Standard (essential) uniqueness properties
of cocartesian lifts may now be deployed to provide canonical isomorphisms 𝐸𝜓⋅𝜙 ≅ 𝐸𝜓 ∘ 𝐸𝜙 and 𝐸id𝑎 ≅ id𝛦𝑎
and to prove that these satisfy required coherence conditions.

It is this 2-categorical comprehension construction that motivates the key construction of our paper.

Comprehension and 2-fibrations

In passing, we might quickly observe that the 2-categorical comprehension construction may be regarded
as being but one aspect of the theory of 2-fibrations. Specifically the totality of all cocartesian fibrations
and cartesian functors between them in𝒦 is a 2-category whose codomain projection 𝒸ℴ𝒞𝒶𝓇𝓉(𝒦) → 𝒦
is a cartesian 2-fibration, it is indeed the archetypal such gadget. Under this interpretation, the lifting
construction used to define the pseudo-functor Fun𝒦(𝐴, 𝐵) → 𝒦/𝛢 is quite simply the typical cartesian
2-cell lifting property characteristic of a 2-fibration.

In an early draft of our paper, our narrative followed just this kind of route. There we showed that the totality
of cocartesian fibrations in an ∞-cosmos could be assembled to give the total space of a kind of cartesian
fibration of (weak) 2-complicial sets. In the end, however, we abandoned this presentation in favour of one
that was more explicitly to the point for current purposes. Watch this space, however, because we are currently
preparing a paper on the complicial version of this theory which will return to this point of view. For us this
has become a key component of our work on foundations of complicial approach to (∞, ∞)-category theory.

An∞-categorical comprehension construction
In an ∞-cosmos𝒦, by which we mean a category enriched over quasi-categories that admits a specified class
of isofibrations and certain simplicially enriched limits, we may again define 𝑝 ∶ 𝐸 ↠ 𝐵 to be a cocartesian
fibration representably. That is to say, 𝑝 is a cocartesian fibration if it is an isofibration in the specified class and
if

Fun𝒦(𝑋, 𝑝) ∶ Fun𝒦(𝑋, 𝐸) → Fun𝒦(𝑋, 𝐵)

is a cocartesian fibration of quasi-categories for every ∞-category𝑋. Then a direct “homotopy coherent”
generalisation of the 2-categorical construction discussed above demonstrates that we define an associated
comprehension functor:

𝑐𝑝,𝛢 ∶ ℭFun𝒦(𝐴, 𝐵) → 𝒸ℴ𝒞𝒶𝓇𝓉(𝒦)/𝛢.
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The image lands in the maximal Kan complex enriched subcategory of the quasi-categorically enriched
category of cocartesian fibrations and cartesian functors over𝐴, so the comprehension functor transposes to
define a map of quasi-categories

𝑐𝑝,𝛢 ∶ Fun𝒦(𝐴, 𝐵) → 𝔑(𝒸ℴ𝒞𝒶𝓇𝓉(𝒦)/𝛢)

whose codomain is defined by applying the homotopy coherent nerve.

Straightening as comprehension

The “straightening” of a cocartesian fibration into a homotopy coherent diagram is certainly one of early
highlights in Lurie’s account of quasi-category theory. Such functors are intrinsically tricky to construct,
since that process embroils us in specifying an infinite hierarchy of homotopy coherent data.

We may deploy the ∞-categorical comprehension to provide a alternative approach to straightening. To that
end we work in the ∞-cosmos of quasi-categories𝒬𝒞𝒶𝓉 and let𝐴 = 1, then observe that the comprehension
functor 𝑐𝑝,1 ∶ ℭ𝐵 → 𝒬𝒞𝒶𝓉 is itself the straightening of 𝑝. Indeed, it is possible to use the constructions in
our paper to extend this variant of unstraightening to give a functor of quasi-categories:

𝔑(𝒸ℴ𝒞𝒶𝓇𝓉(𝒦)/𝛣) → Fun𝒦(𝐵,𝑄)

Here𝑄 is the (large) quasi-category constructed by taking the homotopy coherent nerve of (themaximal Kan
complex enriched subcategory of )𝒬𝒞𝒶𝓉. So the objects of Fun𝒦(𝐵,𝑄) correspond bijectively to “straight”
simplicial functors ℭ𝐵 → 𝒬𝒞𝒶𝓉. We should confess, however, that we do not explicitly pursue the full
construction of this straightening functor there.

Unstraightening as comprehension

In the ∞-categorical context, the Grothendieck construction is christened unstraightening by Lurie. It is
inverse to the straightening construction discussed above.

We may also realise unstraightening as comprehension. To that end we follow Ross Street’s lead by taking𝑄∗
to be a quasi-category of pointed quasi-categories and apply the comprehension construction to the “forget
the point” projection𝑄∗ → 𝑄. The comprehension functor thus derived

𝑐𝑝,𝛢 ∶ Fun𝒦(𝐴,𝑄) → 𝔑(𝒹𝒞ℴ𝒞𝒶𝓇𝓉(𝒦)/𝛢)

defines a quasi-categorical analogue of Lurie’s unstraightening construction. In an upcoming paper we use
the quasi-categorical variant of Beck’s monadicity theorem to prove that this functor is an equivalence. We
also extend this result to certain other ∞-cosmoi, such as the ∞-cosmos of (co)cartesian fibrations over a fixed
quasi-category.

Constructing the Yoneda embedding

Applying the comprehension construction to the cocartesian fibration cod ∶ 𝐴2 → 𝐴 in the slice ∞-cosmos
𝒦/𝛢, we obtain a map

よ ∶ Fun𝒦(1, 𝐴) → 𝔑(𝒞𝒶𝓇𝓉(𝒦)/𝛢)

that carries an element 𝑎 ∶ 1 → 𝐴 to the groupoidal cartesian fibration dom ∶ 𝐴 ↓ 𝑎 → 𝐴. This provides us
with a particularly explicit model of the Yoneda embedding, whose action on hom-spaces is easily computed.
In particular, this allows us to easily demonstrate that the Yoneda embedding is fully-faithful and thus that
every quasi-category is equivalent to the homotopy coherent nerve of some Kan complex enriched category.
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